# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2,6-Dimethoxy-4-(5-oxo-2-phenyl-4,5dihydro-1,3-oxazol-4-ylidenemethyl)phenyl acetate

Yi-Feng Sun,\* Xin-Li Wang, Ji-Kun Li, Ze-Bao Zheng and Ren-Tao Wu

Department of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China

Correspondence e-mail: sunyf50@hotmail.com

Received 16 October 2007; accepted 18 October 2007

Key indicators: single-crystal X-ray study; T = 273 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.117; data-to-parameter ratio = 12.8.

The title compound, C<sub>20</sub>H<sub>17</sub>NO<sub>6</sub>, was synthesized by the reaction of syringaldehyde with hippuric acid. The molecule adopts a Z configuration about the central olefinic bond. The two benzene rings and the oxazolone ring are almost coplanar. The crystal structure is stabilized by weak intermolecular C- $H \cdots O$  hydrogen bonds.

#### **Related literature**

For background literature, see: Aaglawe et al. (2003); Grassi et al. (2004); Khan et al. (2006); Song et al. (2001); Sun & Cui (2007). For related structures, see: Imhof & Garms (2005); Song et al. (2004); Vasuki et al. (2001).



### **Experimental**

#### Crystal data

| $C_{20}H_{17}NO_{6}$ | b = 10.4431 (15)  Å              |
|----------------------|----------------------------------|
| $M_r = 367.35$       | c = 10.9693 (16)  Å              |
| Triclinic, P1        | $\alpha = 111.074 \ (6)^{\circ}$ |
| a = 8.8400 (13)  Å   | $\beta = 96.544 \ (6)^{\circ}$   |

| $\gamma = 102.119 \ (6)^{\circ}$ |
|----------------------------------|
| $V = 903.7 (2) \text{ Å}^3$      |
| Z = 2                            |
| Mo $K\alpha$ radiation           |

#### Data collection

\_\_\_\_\_

| Bruker SMART CCD area-detector             |
|--------------------------------------------|
| diffractometer                             |
| Absorption correction: multi-scan          |
| (SADABS; Sheldrick, 1996)                  |
| $T_{\rm min} = 0.985, T_{\rm max} = 0.990$ |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 248 parameters  $wR(F^2) = 0.117$ H-atom parameters constrained S = 1.02 $\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ 3176 reflections

| Table 1                |     |     |
|------------------------|-----|-----|
| Hydrogen-bond geometry | (Å, | °). |

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| C8-H8···O1 <sup>i</sup>     | 0.93 | 2.56                    | 3.483 (2)    | 172                                  |
|                             |      |                         |              |                                      |

 $\mu = 0.10 \text{ mm}^{-1}$ T = 273 (2) K

 $R_{\rm int} = 0.028$ 

 $0.15 \times 0.12 \times 0.10 \text{ mm}$ 

10391 measured reflections

3176 independent reflections 2244 reflections with  $I > 2\sigma(I)$ 

Symmetry code: (i) -x + 3, -y + 1, -z + 1.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank Taishan University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2317).

#### References

- Aaglawe, M. J., Dhule, S. S., Bahekar, S. S., Wakte, P. S. & Shinde, D. B. (2003). J. Korean Chem. Soc. 47, 133-136.
- Bruker (1997). SMART (Version 5.611), SAINT (Version 6.10) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Grassi, G., Foti, F., Risitano, F., Cordaro, M., Nicolo, F. & Bruno, G. (2004). J. Mol. Struct. 698, 81-86.
- Imhof, W. & Garms, S. (2005). Acta Cryst. E61, m1413-m1415.
- Khan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. &
- Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 6027-6033.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Song, H.-C., Sun, Y.-F., Li, W.-M., Xu, Z.-L., Zhang, L.-Z. & Cai, Z.-G. (2001). Acta Chim. Sinica, 59, 1563-1565.
- Song, H.-C., Wen, H. & Li, W.-M. (2004). Spectrochim. Acta Part A, 60, 1587-1591.
- Sun, Y.-F. & Cui, Y.-P. (2007). Acta Cryst. E63, 01932-01933.
- Vasuki, G., Parthasarathi, V., Ramamurthi, K., Singh, R. M. & Srivastava, A. (2001). Acta Cryst. E57, o120-o121.

supplementary materials

Acta Cryst. (2007). E63, 04426 [doi:10.1107/S1600536807051458]

## 2,6-Dimethoxy-4-(5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl)phenyl acetate

# Y.-F. Sun, X.-L. Wang, J.-K. Li, Z.-B. Zheng and R.-T. Wu

### Comment

The title compound, (I), was prepared as part of our systematic search for organic functional materials with nonlinear optical properties (Sun & Cui, 2007). Oxazolones are highly versatile intermediates used for the synthesis of several biologically active organic molecules, such as amino acids, peptides, antimicrobial or antitumor compounds, immunomodulators, heterocyclic precursors for biosensors coupling, and photosensitive composition devices for proteins (Aaglawe *et al.*, 2003; Grassi *et al.*, 2004; Khan *et al.*, 2006). Moreover, some of them are reported to exhibit promising nonlinear optical properties (Song *et al.*, 2001).

The molecule of compound (I) possesses normal geometric parameters and adopts a *Z* configuration about the central olefinic bond (Fig. 1). The two phenyl rings and the oxazolone ring are almost coplanar which allows conjugation (Table 1). Also, while O4, O5, O6, C17 and C18 are approximately coplanar with their attached benzene ring, O3,C19 and C20 deviate from their mother benzene ring on the same side (Fig. 1;Table 1). The title compound shows a weak intermolecular hydrogen bond between the C8 and O1 atoms (C8—H8…O1<sup>i</sup>: C8—H8 = 0.93 Å, H8…O1 = 2.56 Å, C8…O1 = 3.483 (2) Å and C8—H8…O1 = 172 °; symmetry code: (i) 3 - x, 1 - y, 1 - z), which contribute to the crystal structure stabilization.

Similar structures have been observed in the related oxazolone analogues reported by Imhof & Garms (2005), Song *et al.* (2004), and Vasuki *et al.* (2001).

#### Experimental

The title compound was synthesized from syringaldehyde and hippuric acid as reported (Song *et al.*, 2001). A mixture of hippuric acid (2.2 mmol), syringaldehyde (2 mmol), sodium acetate (3 mmol) in acetic anhydride (8 ml) was refluxed for 5 hr. It was then cooled and ethanol (10 ml) was added it. The resulting mixture was left over night at room temp. The solid thus obtained was filtered, dried and crystallized from ethanol to get title compound (I) in 67% yield. A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporating from ethanol at room temperature.

#### Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$ . All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ .

# Figures



Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii.

# 2,6-Dimethoxy-4-(5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl)phenyl acetate

| Crystal data                                    |                                              |
|-------------------------------------------------|----------------------------------------------|
| C <sub>20</sub> H <sub>17</sub> NO <sub>6</sub> | Z = 2                                        |
| $M_r = 367.35$                                  | $F_{000} = 384$                              |
| Triclinic, $P\overline{1}$                      | $D_{\rm x} = 1.350 {\rm ~Mg~m}^{-3}$         |
| Hall symbol: -P 1                               | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| a = 8.8400 (13)  Å                              | Cell parameters from 2426 reflections        |
| b = 10.4431 (15)  Å                             | $\theta = 2.0 - 28.2^{\circ}$                |
| c = 10.9693 (16)  Å                             | $\mu = 0.10 \text{ mm}^{-1}$                 |
| $\alpha = 111.074 \ (6)^{\circ}$                | T = 273 (2)  K                               |
| $\beta = 96.544 \ (6)^{\circ}$                  | Block, red                                   |
| $\gamma = 102.119 \ (6)^{\circ}$                | $0.15 \times 0.12 \times 0.10 \text{ mm}$    |
| $V = 903.7 (2) \text{ Å}^3$                     |                                              |

### Data collection

| Bruker SMART CCD area-detector diffractometer                  | 3176 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2244 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.028$                  |
| T = 273(2)  K                                                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\phi$ and $\omega$ scans                                      | $\theta_{\min} = 2.0^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -10 \rightarrow 10$               |
| $T_{\min} = 0.985, T_{\max} = 0.990$                           | $k = -12 \rightarrow 12$               |
| 10391 measured reflections                                     | $l = -13 \rightarrow 13$               |

# Refinement

| Refinement on $F^2$             | Hydrogen site location: difference Fourier map                                      |
|---------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | $w = 1/[\sigma^2(F_o^2) + (0.0571P)^2 + 0.1424P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| $wR(F^2) = 0.117$               | $(\Delta/\sigma)_{\text{max}} = 0.009$                                              |
| <i>S</i> = 1.02                 | $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$                               |
|                                 |                                                                                     |

3176 reflections $\Delta \rho_{min} = -0.16 \text{ e Å}^{-3}$ 248 parametersExtinction correction: SHELXL97 (Sheldrick, 1997)Primary atom site location: structure-invariant direct<br/>methodsExtinction coefficient: 0.005 (2)Secondary atom site location: difference Fourier map

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x            | у            | Ζ             | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|--------------|---------------|---------------------------|
| 01  | 1.19578 (16) | 0.71134 (16) | 0.39534 (16)  | 0.0721 (4)                |
| O2  | 1.22759 (14) | 0.50852 (13) | 0.41266 (13)  | 0.0552 (4)                |
| O3  | 0.2048 (2)   | 0.1945 (2)   | -0.11379 (17) | 0.0945 (6)                |
| O4  | 0.41331 (15) | 0.10522 (14) | 0.14667 (14)  | 0.0628 (4)                |
| 05  | 0.30933 (16) | 0.51339 (15) | 0.12013 (15)  | 0.0665 (4)                |
| O6  | 0.21087 (14) | 0.24950 (15) | 0.10383 (13)  | 0.0595 (4)                |
| N1  | 0.97910 (17) | 0.36389 (15) | 0.32873 (14)  | 0.0478 (4)                |
| C1  | 1.1388 (2)   | 0.5898 (2)   | 0.3770 (2)    | 0.0535 (5)                |
| C2  | 0.9783 (2)   | 0.49460 (19) | 0.32069 (18)  | 0.0478 (4)                |
| C3  | 1.1222 (2)   | 0.37709 (19) | 0.37993 (17)  | 0.0466 (4)                |
| C4  | 1.1841 (2)   | 0.2698 (2)   | 0.40751 (18)  | 0.0478 (4)                |
| C5  | 1.0819 (2)   | 0.1380 (2)   | 0.3802 (2)    | 0.0633 (6)                |
| Н5  | 0.9751       | 0.1192       | 0.3446        | 0.076*                    |
| C6  | 1.1380 (3)   | 0.0351 (2)   | 0.4056 (2)    | 0.0733 (6)                |
| Н6  | 1.0691       | -0.0533      | 0.3870        | 0.088*                    |
| C7  | 1.2958 (3)   | 0.0623 (3)   | 0.4584 (2)    | 0.0708 (6)                |
| H7  | 1.3334       | -0.0074      | 0.4759        | 0.085*                    |
| C8  | 1.3972 (3)   | 0.1921 (2)   | 0.4852 (2)    | 0.0675 (6)                |
| H8  | 1.5039       | 0.2102       | 0.5206        | 0.081*                    |
| C9  | 1.3425 (2)   | 0.2959 (2)   | 0.4601 (2)    | 0.0582 (5)                |
| Н9  | 1.4123       | 0.3839       | 0.4785        | 0.070*                    |
| C10 | 0.8562 (2)   | 0.5342 (2)   | 0.27495 (18)  | 0.0501 (5)                |
| H10 | 0.8808       | 0.6257       | 0.2760        | 0.060*                    |
| C11 | 0.6911 (2)   | 0.45420 (19) | 0.22406 (17)  | 0.0456 (4)                |
| C12 | 0.5844 (2)   | 0.5246 (2)   | 0.19266 (18)  | 0.0498 (5)                |
| H12 | 0.6204       | 0.6180       | 0.2003        | 0.060*                    |
| C13 | 0.4248 (2)   | 0.4545 (2)   | 0.15007 (18)  | 0.0492 (5)                |
| C14 | 0.3728 (2)   | 0.3144 (2)   | 0.13583 (17)  | 0.0477 (5)                |
|     |              |              |               |                           |

### Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$

# supplementary materials

| C15  | 0.4782 (2)  | 0.24279 (19) | 0.16484 (17) | 0.0463 (4) |
|------|-------------|--------------|--------------|------------|
| C16  | 0.6370 (2)  | 0.31274 (19) | 0.20929 (17) | 0.0471 (4) |
| H16  | 0.7083      | 0.2657       | 0.2295       | 0.057*     |
| C17  | 0.3567 (3)  | 0.6575 (2)   | 0.1335 (2)   | 0.0708 (6) |
| H17A | 0.4077      | 0.7177       | 0.2245       | 0.106*     |
| H17B | 0.2653      | 0.6860       | 0.1091       | 0.106*     |
| H17C | 0.4289      | 0.6661       | 0.0761       | 0.106*     |
| C18  | 0.5178 (3)  | 0.0298 (2)   | 0.1789 (3)   | 0.0806 (7) |
| H18A | 0.5953      | 0.0248       | 0.1240       | 0.121*     |
| H18B | 0.4585      | -0.0649      | 0.1633       | 0.121*     |
| H18C | 0.5699      | 0.0787       | 0.2712       | 0.121*     |
| C19  | 0.1360 (3)  | 0.2004 (2)   | -0.0251 (2)  | 0.0656 (6) |
| C20  | -0.0388 (3) | 0.1572 (3)   | -0.0365 (3)  | 0.0983 (9) |
| H20A | -0.0876     | 0.2090       | -0.0784      | 0.147*     |
| H20B | -0.0617     | 0.1782       | 0.0510       | 0.147*     |
| H20C | -0.0795     | 0.0568       | -0.0893      | 0.147*     |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| 01  | 0.0513 (9)  | 0.0497 (9)  | 0.1113 (12) | 0.0051 (7)  | 0.0100 (8)   | 0.0341 (9)  |
| 02  | 0.0404 (7)  | 0.0478 (8)  | 0.0725 (9)  | 0.0068 (6)  | 0.0058 (6)   | 0.0228 (7)  |
| O3  | 0.0773 (12) | 0.1121 (15) | 0.0666 (11) | 0.0024 (10) | 0.0038 (9)   | 0.0201 (10) |
| O4  | 0.0527 (8)  | 0.0467 (8)  | 0.0885 (10) | 0.0078 (6)  | 0.0092 (7)   | 0.0311 (7)  |
| 05  | 0.0562 (9)  | 0.0639 (10) | 0.0866 (10) | 0.0272 (7)  | 0.0063 (7)   | 0.0343 (8)  |
| O6  | 0.0398 (7)  | 0.0714 (10) | 0.0679 (9)  | 0.0109 (6)  | 0.0088 (6)   | 0.0312 (8)  |
| N1  | 0.0415 (9)  | 0.0440 (9)  | 0.0555 (9)  | 0.0101 (7)  | 0.0086 (7)   | 0.0182 (7)  |
| C1  | 0.0457 (11) | 0.0460 (12) | 0.0691 (13) | 0.0107 (9)  | 0.0137 (9)   | 0.0234 (10) |
| C2  | 0.0435 (10) | 0.0440 (11) | 0.0535 (11) | 0.0100 (8)  | 0.0117 (8)   | 0.0170 (9)  |
| C3  | 0.0408 (10) | 0.0441 (11) | 0.0505 (10) | 0.0070 (8)  | 0.0102 (8)   | 0.0158 (9)  |
| C4  | 0.0444 (10) | 0.0474 (11) | 0.0492 (10) | 0.0127 (9)  | 0.0106 (8)   | 0.0159 (9)  |
| C5  | 0.0484 (12) | 0.0573 (13) | 0.0830 (15) | 0.0108 (10) | 0.0088 (10)  | 0.0296 (11) |
| C6  | 0.0676 (15) | 0.0547 (14) | 0.1002 (17) | 0.0125 (11) | 0.0155 (13)  | 0.0364 (13) |
| C7  | 0.0712 (15) | 0.0650 (15) | 0.0851 (16) | 0.0272 (12) | 0.0111 (12)  | 0.0363 (13) |
| C8  | 0.0564 (12) | 0.0656 (15) | 0.0743 (14) | 0.0208 (11) | -0.0014 (10) | 0.0224 (12) |
| C9  | 0.0491 (11) | 0.0518 (12) | 0.0651 (12) | 0.0097 (9)  | 0.0032 (9)   | 0.0180 (10) |
| C10 | 0.0481 (11) | 0.0444 (11) | 0.0571 (11) | 0.0103 (9)  | 0.0110 (9)   | 0.0206 (9)  |
| C11 | 0.0461 (10) | 0.0428 (11) | 0.0475 (10) | 0.0129 (8)  | 0.0089 (8)   | 0.0170 (8)  |
| C12 | 0.0531 (12) | 0.0436 (11) | 0.0537 (11) | 0.0151 (9)  | 0.0089 (9)   | 0.0199 (9)  |
| C13 | 0.0467 (11) | 0.0537 (12) | 0.0526 (11) | 0.0223 (9)  | 0.0100 (8)   | 0.0225 (9)  |
| C14 | 0.0395 (10) | 0.0520 (12) | 0.0512 (11) | 0.0119 (9)  | 0.0095 (8)   | 0.0203 (9)  |
| C15 | 0.0462 (10) | 0.0414 (11) | 0.0507 (10) | 0.0104 (9)  | 0.0097 (8)   | 0.0184 (9)  |
| C16 | 0.0428 (10) | 0.0461 (11) | 0.0554 (11) | 0.0146 (8)  | 0.0074 (8)   | 0.0229 (9)  |
| C17 | 0.0811 (16) | 0.0657 (15) | 0.0844 (15) | 0.0400 (12) | 0.0169 (12)  | 0.0399 (12) |
| C18 | 0.0790 (16) | 0.0514 (14) | 0.119 (2)   | 0.0195 (12) | 0.0154 (14)  | 0.0435 (14) |
| C19 | 0.0554 (13) | 0.0597 (14) | 0.0735 (15) | 0.0134 (11) | 0.0024 (12)  | 0.0216 (12) |
| C20 | 0.0475 (13) | 0.108 (2)   | 0.120 (2)   | 0.0167 (13) | -0.0055 (13) | 0.0317 (18) |
|     |             |             |             |             |              |             |

*Geometric parameters (Å, °)* 

| O1—C1      | 1.196 (2)   | С8—С9         | 1.375 (3)   |
|------------|-------------|---------------|-------------|
| O2—C3      | 1.383 (2)   | С8—Н8         | 0.9300      |
| O2—C1      | 1.392 (2)   | С9—Н9         | 0.9300      |
| O3—C19     | 1.195 (3)   | C10—C11       | 1.451 (3)   |
| O4—C15     | 1.362 (2)   | C10—H10       | 0.9300      |
| O4—C18     | 1.424 (2)   | C11—C12       | 1.395 (2)   |
| O5—C13     | 1.364 (2)   | C11—C16       | 1.397 (2)   |
| O5—C17     | 1.423 (2)   | C12—C13       | 1.384 (3)   |
| O6—C19     | 1.350 (3)   | C12—H12       | 0.9300      |
| O6—C14     | 1.392 (2)   | C13—C14       | 1.383 (3)   |
| N1—C3      | 1.282 (2)   | C14—C15       | 1.388 (2)   |
| N1—C2      | 1.401 (2)   | C15—C16       | 1.378 (2)   |
| C1—C2      | 1.466 (3)   | C16—H16       | 0.9300      |
| C2—C10     | 1.343 (3)   | C17—H17A      | 0.9600      |
| C3—C4      | 1.452 (2)   | C17—H17B      | 0.9600      |
| C4—C9      | 1.382 (3)   | С17—Н17С      | 0.9600      |
| C4—C5      | 1.386 (3)   | C18—H18A      | 0.9600      |
| C5—C6      | 1.373 (3)   | C18—H18B      | 0.9600      |
| С5—Н5      | 0.9300      | C18—H18C      | 0.9600      |
| C6—C7      | 1.376 (3)   | C19—C20       | 1.494 (3)   |
| С6—Н6      | 0.9300      | C20—H20A      | 0.9600      |
| С7—С8      | 1.368 (3)   | C20—H20B      | 0.9600      |
| С7—Н7      | 0.9300      | C20—H20C      | 0.9600      |
| C3—O2—C1   | 105.38 (14) | C16—C11—C10   | 122.31 (15) |
| C15—O4—C18 | 117.16 (15) | C13—C12—C11   | 119.58 (17) |
| C13—O5—C17 | 117.50 (16) | С13—С12—Н12   | 120.2       |
| C19—O6—C14 | 117.78 (15) | С11—С12—Н12   | 120.2       |
| C3—N1—C2   | 105.86 (15) | O5—C13—C14    | 115.29 (16) |
| O1—C1—O2   | 121.92 (17) | O5—C13—C12    | 124.87 (17) |
| O1—C1—C2   | 133.03 (18) | C14—C13—C12   | 119.84 (15) |
| O2—C1—C2   | 105.04 (16) | C13—C14—C15   | 121.01 (16) |
| C10—C2—N1  | 128.66 (17) | C13—C14—O6    | 119.01 (15) |
| C10—C2—C1  | 123.40 (17) | C15—C14—O6    | 119.71 (16) |
| N1—C2—C1   | 107.90 (15) | O4—C15—C16    | 124.84 (15) |
| N1—C3—O2   | 115.79 (15) | O4—C15—C14    | 115.76 (16) |
| N1—C3—C4   | 127.05 (17) | C16—C15—C14   | 119.40 (16) |
| O2—C3—C4   | 117.16 (15) | C15—C16—C11   | 120.15 (16) |
| C9—C4—C5   | 119.23 (18) | C15-C16-H16   | 119.9       |
| C9—C4—C3   | 121.59 (17) | C11—C16—H16   | 119.9       |
| C5—C4—C3   | 119.19 (17) | O5-C17-H17A   | 109.5       |
| C6—C5—C4   | 120.1 (2)   | O5-C17-H17B   | 109.5       |
| С6—С5—Н5   | 119.9       | H17A—C17—H17B | 109.5       |
| С4—С5—Н5   | 119.9       | O5—C17—H17C   | 109.5       |
| C5—C6—C7   | 120.2 (2)   | H17A—C17—H17C | 109.5       |
| С5—С6—Н6   | 119.9       | H17B—C17—H17C | 109.5       |
| С7—С6—Н6   | 119.9       | O4—C18—H18A   | 109.5       |

# supplementary materials

| D—H···A                                  | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------|-------------|-------|--------------|------------|
| C8—H8···O1 <sup>i</sup>                  | 0.93        | 2.56  | 3.483 (2)    | 172        |
| Symmetry codes: (i) $-x+3, -y+1, -z+1$ . |             |       |              |            |



Fig. 1